Course Assessment in a Box, Version II

Course Assessment in a Box is a practical tool for you to conduct assessment of course Student Learning Outcomes (SLOs). By following these simple steps, using assessment tools you already use to evaluate student work, you can easily produce a course assessment of SLOs.

These steps align with the course SLO assessment page in the CurricUNET Program Review Module. Once the steps are completed, simply attach it to your Program Review.

1. Number and name of the course being assessed:

| BIOL 103A Anatomy and Physiology |

2. List all the Course SLOs from the Course Outline of Record:

| 1. Identify and diagram major anatomical features of the human body. 2. Recognize and describe structure and function relationships at the cellular, tissue and organ levels. 3. Summarize and explain physiological mechanisms that control homeostasis and be able to apply these mechanisms to specific body systems. 4. Describe how interactions between body systems are evident in human anatomical structure and physiology. 5. Demonstrate skills in the use of biological instrumentation (including muscle and nerve physiology) and skills in anatomical dissection (including animals and cadavers). |

3. If you have had any dialogue about the Course SLOs amongst faculty who teach this course, please describe it here (leave blank if there has been no specific dialogue):

| Jim Baxter and I discussed methods of assessing students ability to use the microscope. |

4. List the SLO(s) you are assessing in this particular instance:

| 5. Demonstrate skills in the use of biological instrumentation (including muscle and nerve physiology) and skills in anatomical dissection (including animals and cadavers). |

5. Describe the assessment strategy or tool that addresses the SLO(s):

I continued assess students during the first few weeks of laboratory in a casual manner. When a student requested help with their slides I would first walk them through how the slide and microscope was inappropriately adjusted (if that was the case). This was followed up by a set of practical exam questions that were more similar to the way in which Dr. Baxter assesses his class. I subdivided the use of the microscope into specific skills. These were the skills stressed in the lab lecture and those found wanting in my casual assessments as I aided individual students.

NOTE: Try to use assessment strategies you are already using to evaluate student work as part of your grading system. Examples: Rubrics for Evaluating Projects or Assignments, Portfolio Evaluation, Culminating Projects, Final Exams, Writing Assignments, Performance Assessment, Department Testing, Pre and Post Tests, Vendor or Industry Certification Examinations, Indirect Assessments (Student Surveys, Focus Group Discussions, Interviews), or others....
6. Describe how the criteria or standards in this assessment tool link to the SLO(s) being assessed:

Three skills were examined in separate practical exam questions on a scale of 1-4. As the exam questions were worth only 1 point this shows up in the data as 0, 0.25, 0.5 or 1. Students with 1 correctly demonstrated that skill and with 0 showed no ability to perform this skill correctly.

7. By looking holistically at the results from all students, describe your findings:

See attached. 81% could correctly determine the level of magnification a microscope was giving when asked. However, only 58% could recognize what was incorrectly adjusted when asked to determine what was needed for proper critical illumination. Similarly, only 62% correctly identified what was wrong in how a microscope is correctly maintained.

8. Describe faculty dialogue (if any) involved in the assessment process:

none

9. Based on an analysis of your findings and dialogue, describe revisions (if any) in curriculum or teaching strategies implemented to promote student success:

Normally I lecture students on the proper adjustment and maintenance of microscopes prior to the students obtaining their microscope and using it. This semester I intend to have students get their microscope and set up critical illumination as I lecture about it. Similarly I intend to walk them thorough proper techniques in maintaining and cleaning microscopes.

10. After the improvements are implemented, describe the results: